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Small-scale characteristics of a turbulent
boundary layer over a rough wall
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Measurements of the spanwise and wall-normal components of vorticity and their
constituent velocity derivative fluctuations have been made in a turbulent boundary
layer over a mesh-screen rough wall using a four-hot-wire vorticity probe. The mea-
sured spectra and variances of vorticity and velocity derivatives have been corrected
for the effect of spatial resolution. The high-wavenumber behaviour of the spectra
conforms closely with isotropy. Over most of the outer layer, the normalized magni-
tudes of the velocity derivative variances differ significantly from those over a smooth
wall layer. The differences are such that the variances are much more nearly isotropic
over the rough wall than on the smooth wall. This behaviour is consistent with earlier
observations that the large-scale structure in this rough wall layer is more isotropic
than that in a smooth wall layer. Isotropy-based approximations for the mean energy
dissipation rate and mean enstrophy are consequently more reliable in this rough
wall layer than in a smooth wall layer. In the outer layer, the vorticity variances are
slightly larger than those over a smooth wall; reflecting structural differences between
the two flows.

1. Introduction
Experimental investigations of a turbulent boundary layer over a mesh-screen rough

wall (Krogstad, Antonia & Browne 1992; Krogstad & Antonia 1994; Shafi & Antonia
1995; Shafi Antonia & Krogstad 1995) have indicated that the turbulence structure
differs, in a number of ways, from that in a smooth wall boundary layer. For example,

the magnitudes of u+
2

2
, the normal Reynolds stress, and of the Reynolds shear stress

u+
1 u

+
2 (u1, u2 and u3 are the velocity fluctuations in the streamwise x1, wall-normal x2

and spanwise x3 directions respectively; the superscript + denotes normalization by
the friction velocity Uτ) are larger than in a smooth wall layer. Two-point velocity
correlations indicated that the average inclination of the large-scale motion is twice
as large as on a smooth wall while the longitudinal length scale associated with this
motion is considerably smaller over the rough wall. The relative magnitudes of the
length scales in the x1, x2, and x3 directions implied that the large-scale motion was
closer to isotropy in the rough wall layer. The measured second and third invariants
of the Reynolds stresses suggested that the anisotropy of the Reynolds stress tensor
is appreciably reduced over the roughness (Shafi & Antonia 1995). Following these
observations, one would expect the small-scale turbulence structure to be closer to
isotropy in this rough wall layer. The major aim of this paper is to quantify this
expectation by examining the measured statistics of velocity derivatives and vorticity
fluctuations and comparing them to the corresponding isotropic values. As a defining
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characteristic of turbulence, vorticity fluctuations ωi (≡ εijkuk,j , where εijk is the
alternating unit tensor and uk,j ≡ ∂uk/∂xj is the velocity gradient tensor) have been
used for detecting the turbulent/non-turbulent interface (e.g. Corrsin & Kistler 1955;
Klewicki, Falco & Foss 1992). Vorticity is also an important characteristic of the
small-scale structure since the length scales which contribute most to the vorticity
spectrum reside in the dissipative range (e.g. Antonia, Zhu & Shafi 1996b). Vorticity
statistics should therefore be useful for checking departures from isotropy of the
small-scale structure. Relatively few vorticity measurements have been reported for
boundary layers over rough walls. Corrsin & Kistler (1955) used a Kovasznay-type
vorticity probe to measure ω1 over a corrugated wall; they reported the variations

of ω2
1

1/2
across the layer but the focus of their investigation was the turbulent/non-

turbulent interface and its properties. Ong & Wallace (1995) presented spectra of
all three components of ωi in a rough wall boundary layer at a high turbulence

Reynolds number Rλ (≡ u2
1λ/ν; λ is the Taylor microscale u2

1

1/2
/u2

1,1

1/2
and ν is

the kinematic viscosity) of 870, mainly with a view to compare the inertial-range
behaviour with isotropy. Fan (1991) measured ω1, using the Kovasznay-type probe, in
the atmospheric surface layer, primarily to explore the multifractal nature of vorticity.
Fan also reported that, over the inertial range, the spectrum of ω1 was in agreement

with isotropy. Folz (1993) reported measurements of ω2
3

1/2
obtained with a four-hot-

wire probe (Foss 1979) in a turbulent boundary layer over two rough surfaces, one
comprising closely packed sifted rocks and the other a succession of spanwise square

rods with a spacing to width ratio of 4. The distributions of ω2
3

1/2
, like those for

the r.m.s. velocities, indicated differences in both inner and outer regions between

the two surfaces. Krogstad & Antonia (1994) reported approximations to ω2
2

1/2
and

ω2
3

1/2
over a mesh-screen roughness. These vorticity components were inferred from

data obtained using orthogonal arrays of X-probes, one in the (x1, x2)-plane and the
other in the (x1, x3)-plane. The spatial resolution of the array was poor (∆x∗2 ' 66 at
x2/δ ' 0.3, δ is the boundary layer thickness; an asterisk denotes normalization by
the Kolmogorov length scale η ≡ ν3/4/ε1/4 and velocity scale UK = ν1/4ε1/4, where ε is

the mean energy dissipation rate), so the values of ω2
2

1/2
and ω2

3

1/2
were significantly

underestimated. In all the previous studies, the data were not corrected for the effect
of spatial resolution of the probe. It is important that adequately resolved data
are available for comparison with the adequately resolved (experimental and direct
numerical simulation (DNS)) data for a smooth wall layer.

An attempt is made to provide as reliable a set of vorticity data as possible by
correcting some of the statistics (spectra, variances) for the effect of spatial resolution
of the probe. It is expected that the observed differences in the large-scale motion
between rough and smooth wall layers (Krogstad et al. 1992; Krogstad & Antonia
1994) should be reflected in the vorticity statistics. In particular, since the large-scale
structure is more isotropic (Shafi & Antonia 1995) over the rough wall, the small-
scale structure should also conform more closely with isotropy. An effective way of
quantifying the departure from isotropy is to determine the invariants of the vorticity
and velocity derivative tensors (e.g. Antonia & Kim 1994). Experimentally, this
represents a formidable task. However, two components of ωi and five components
of ui,j were measured; the corrected spectra and variances of these quantities could
be compared with the corresponding isotropic expressions and values. A second aim
of this paper, not unrelated to the first, is to establish whether the nature of the
surface can affect the small-scale structure in the outer layer. This is important in
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Figure 1. (a) Geometry of the mesh roughness, dimensions are in mm; (b) geometry of the
four-hot-wire probe used for measuring ωi (i = 2 and 3); a and b denote the X-wires while c
and d denote the single hot wires. The geometry in the sketch corresponds to that used for ω3

measurements.

the context of determining the degree of interaction between inner and outer regions
of the layer. On the basis of Reynolds stresses and two-point correlations, the level
of interaction over a mesh-screen rough wall appears to be much greater than on a
smooth wall (Krogstad & Antonia 1994). This interaction should leave its signature
on the small-scale structure.

Section 2 describes the experimental conditions and instrumentation. The effect of
spatial resolution on the measurements of transverse derivatives of the longitudinal
velocity fluctuations is considered in §3. Several checks carried out to ascertain the
reliability of the present data are described in §4. Comparison with local isotropy
is discussed in §5. Results for the variances of the transverse vorticity components
and their associated velocity derivatives are presented in §6. P.d.f.s and higher-order
moments of these quantities are reported in §7 while various approximations to the
mean energy dissipation rate and mean enstrophy are examined in §8.

2. Experimental details
The measurements were made in a self-preserving turbulent boundary layer over a

mesh roughened wall. The roughness consisted of a 3.53 m long woven stainless steel
screen of thickness k = 1.55 mm with a wire spacing/diameter ratio of 4.61 (figure
1a). The boundary layer was tripped with a combination of a 4 mm diameter cylinder
and a 150 mm wide strip of 40 grit abrasive paper. A detailed description of the
experimental set-up and flow conditions is given in Krogstad et al. (1992). The data
were obtained at a distance of 3.23 m from the end of the tunnel contraction. The
pressure gradient was zero and the free-stream velocity U∞ was nominally 10 m s−1.
The value of the friction velocity Uτ, inferred from the mean velocity profile using the
optimization scheme of Krogstad et al., was 0.52 m s−1. Under these conditions, the
value of the Reynolds number based on the momentum thickness θ and the Kármán
number were respectively Reθ (≡ U∞θ/ν) ' 7987 and δ+ (≡ δUτ/ν) ' 3152. The
roughness Reynolds number k+ (≡ kUτ/ν) is about 54. While this is comparable to
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the value (' 55) characterizing the upper transition limit for sand grain roughness, it
has been shown (Hama 1954; Bandyopadhyay 1987) that a much lower limit (' 20)
applies to wire mesh roughness; the present flow can therefore be considered to be
fully rough. The Kolmogorov scale η increased from 0.1 mm at x2/δ ' 0.05 to 0.17

mm at x2/δ ' 0.66; here ε was approximated using isotropy, namely ε = 15νu2
1,1 (the

results in §8 support this approximation). Over the same range of x2/δ, the turbulence
Reynolds number Rλ varied from about 175 to 210 and was approximately constant
(' 250) in the region 0.16 6 x2/δ 6 0.55.

The spanwise and wall-normal vorticity components were obtained using a four-
hot-wire vorticity probe consisting of an X-wire and two parallel single wires (e.g.
Haw, Foss & Foss 1989; Rajagopalan & Antonia 1993). The two parallel wires were
normal to the plane of the X-wire and straddled the intersection of the X-wire (figure
1b). For ω3 measurements, the two single wires were placed in the x3 direction, with
a separation in the x2 direction; the X-wire was in the (x1, x2)-plane (the probe was
rotated by 90◦ for ω2 measurements). The separation ∆x3 between the X-wires was
about 0.95 mm (∆x∗3 ' 7.7 at x2/δ ' 0.22) and between the parallel wires ∆x2 was
about 0.9 mm (∆x∗2 ' 7.3 at x2/δ ' 0.22). This latter value was chosen after assessing

the effect of ∆x∗2 on u2
1,2 (see §3). This choice was sufficiently large to avoid problems

associated with small separations (e.g. noise contamination, possible flow interference)

and allowed u2
1,2 to be corrected for the effect of spatial resolution. The included angle

between the X-wires was about 110◦, which was large enough to minimize the effect
of large velocity cone angles (e.g. Perry, Lim & Henbest 1987; Browne, Antonia &
Chua 1989) near the wall. All four (Wollaston Pt–10% Rh) wires of the probe had a
diameter d of 2.5 µm. The wires were partially etched to a nominal length ` of 0.5 mm.
The ratio `/d = 200 was sufficient for end conduction effects (Champagne, Sleicher
& Wehrmann 1967) and the possible low-wavenumber attenuation (Paranthoen, Petit
& Lecordier 1982) to be neglected.

The hot wires were operated with in-house constant-temperature anemometers at
an overheat ratio of 1.5. The signals from the wires were filtered at a cut-off frequency
fc to minimize the contamination from high-frequency electronic noise. The value of
fc was identified, after examining the spectra of the differentiated signals on a real-
time spectrum analyser (HP3582A), with the frequency at which the spectra were
about 2–3 dB higher than the frequency where the noise starts to make a significant
contribution. At x2/δ ' 0.33, fc was about 0.9fK . The details of this procedure and
the adequacy of the choice of fc have been discussed in detail in Antonia et al.
(1996b). The signals were amplified and then digitized at a sampling frequency of 2fc
into a personal computer using a 12 bit A/D converter. A record duration ts of 60 s
was used. Subsequent data processing was done on a VAX 8550 computer.

3. Selection of ∆x2 and the effect of spatial resolution
The measurement of vorticity is difficult primarily because of spatial resolution

requirements. For the particular probe geometry considered in this investigation, the
main difficulty relates to the selection of an appropriate value of the separation
between the two parallel wires. Previous studies (e.g. Antonia, Zhu & Kim 1993; Zhu,
Antonia & Kim 1993) have identified the problems involved in accurately measuring

u2
1,2 (or u2

1,3) using a pair of parallel hot wires. A large separation attenuates the
contribution from the small-scale motion to the high-wavenumber part of the u1,2

spectrum and results in u2
1,2 and consequently ω2

3 being underestimated. Wyngaard
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(1969) suggested that in order to obtain accurate estimates of u2
1,2 with a two-parallel-

wire probe, the value of ∆x∗2 should be less than 3. Klewicki & Falco (1990) prescribed
that ∆x∗2 should be in the range 1.0 < ∆x∗2 6 3.33. George & Hussein (1991) suggested
that the spatial dimensions of the probes used for velocity derivative measurements
must be of order η.

While the above suggestions may be correct in theory, in practice too small a

separation significantly overestimates u2
1,2 due to a number of errors. For very small

separations (e.g. ∆x∗2 6 2), the contamination from the electronic noise of the measur-
ing equipment becomes significant, the uncertainties both in the measurement of the
separation and the velocities increase and there is the possibility of flow interference
from one probe to the other (e.g. Mestayer & Chambaud 1979; Browne, Antonia &
Chambers 1983). Accordingly, it is necessary to select an optimum separation such
that the effects of different errors are minimized. However, the value of this separation
is dependent on the location of the probe in a particular flow and may also vary
from one flow to another (Antonia & Mi 1993; Ewing, Hussein & George 1995).
Therefore, it is important that the choice of an appropriate separation is made only

after carefully assessing the effect of varying ∆x∗2 (or ∆x∗3) on estimates of u2
1,2 (or

u2
1,3).

When the separation ∆x∗2 is such that the major source of error is the high-
wavenumber attenuation of the spectrum, Wyngaard’s analysis, see e.g. Wyngaard
(1969), which assumes isotropy, provides a potential method for correcting measure-

ments of u2
1,2. An extended version of the spectral correction scheme has been tested

experimentally at the centreline of a fully developed turbulent channel flow and suc-
cessfully ‘calibrated’ using the DNS data for the same flow (e.g. Zhu et al. 1993). This
technique has also been employed in a turbulent wake flow (Mi & Antonia 1996) and
a round jet (Antonia & Mi 1993). The results provide satisfactory support for the
technique, at least when isotropy is reasonably approximated by the high-wavenumber
end of the spectrum.

In view of the preceding comments, it seems appropriate to assess the effect of
separation on the measurements of u1,2 for the present four-hot-wire vorticity probe.
Accordingly, a series of separate experiments was carried out at several wall-normal
locations in the rough wall layer, to decide on the appropriate ∆x2 separation for
the vorticity probe. For this purpose, two parallel wires, aligned in the x3 direction
and separated in the x2 direction were used to measure u1,2 using the finite difference
approximation (≡ ∆u1/∆x2). Both wires could be moved an equal distance, using
two independent traversing mechanisms with least counts of 0.01 mm, so that the
midpoint between the wires remained at the same location.

Measurements were made at four locations (x2/δ ' 0.05, 0.11, 0.22, 0.33) in the
rough wall layer, for a relatively large range of ∆x∗2 values. The separation ∆x2 was
varied in the range 0.3–2.2 mm which corresponded to 3 6 ∆x∗2 6 22 at x2/δ ' 0.05.
The effect of wire separation ∆x∗2 on φmu1,2

, the measured spectrum of u1,2 can be

observed in figures 2(a) and 2(b). Only results for x2/δ ' 0.05 and 0.33 are shown

in the figures. The normalization is such that
∫
φ∗u1,2

dk∗1 = u∗1,2
2. As expected, φmu1,2

shows an increased attenuation at high wavenumbers as ∆x∗2 increases. For each
x2/δ location, the corrected spectra are also shown in the figures. The details of the
correction procedure can be found in Antonia & Mi (1993) and are not repeated
here. The correction scheme assumes that E(k), the three-dimensional energy spectrum
tensor, is known. Here, E(k) was determined using the measured distribution of φu1

,
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Figure 2. Measured spectra of u1,2. Both uncorrected and corrected spectra are shown. (a)
x2/δ ' 0.05: —, ∆x∗2 = 5; - - -, 7; – –, 9; — - —, 12; — - - —, 17; — – —, 22. (b) x2/δ ' 0.33: —,
∆x∗2 = 3.8; - - -, 5.3; – –, 6.8; — - —, 9.0; — - - —, 12.0; — – —, 16.6.

the spectrum of u1, via the isotropic relation

E(k) = k2

(
∂2φu1

∂k2
1

)
k1=k

− k
(
∂φu1

∂k1

)
k1=k

, (3.1)

where k ≡ (k2
1 + k2

2 + k2
3)1/2 is the modulus of the wavenumber vector k. Apart from

the data for the smallest separations, at each x2/δ location all corrected φu1,2
data

for different ∆x∗2 values are in reasonably good agreement with each other. The

collapse of different corrected φu1,2
implies the existence of a unique value for u2

1,2.
It also corroborates the correction technique. The data for ∆x∗2 = 5 (figure 2a) and
3.8 (figure 2b) suffer from the problems associated with too small a separation. The
application of corrections to these data, therefore, would result in an overestimation
of the spectral densities.

The dependence of the measured values of u2
1,2

1/2
δ/Uτ on ∆x∗2 at x2/δ ' 0.05

and 0.33 is shown in figure 3. Also plotted are the corrected values of the data for
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Figure 3. Dependence of u2
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1/2
δ/Uτ on ∆x∗2. ◦, x2/δ ' 0.05; �, 0.33. Open and filled in symbols

are for uncorrected and corrected data respectively.

separations greater than about 7η (x2/δ ' 0.05) and 5η (x2/δ ' 0.33). For each x2/δ,

the corrected values are within 5% of each other implying a plateau for u2
1,2. This

is consistent with the spectral data in figures 2(a) and (b). The results indicate that
for the present experimental conditions, a separation of 7η ∼ 9η for the two parallel

wires would allow reliable estimates of u2
1,2 to be obtained, provided a correction is

applied for the effect of separation. These values of ∆x∗2 are significantly different from
those suggested by Klewicki & Falco (1 < ∆x∗2 6 3.33), George & Hussein (∆x∗2 ∼ 1)
and Antonia et al. (1993) (2 6 ∆x∗2 6 3). Clearly, the use of any of the previous

recommendations for selecting ∆x∗2 would have resulted in u2
1,2 being overestimated in

the present flow. This underlines the need to carry out a separate experiment in order
to choose the most appropriate value of ∆x∗2 for a particular flow, in accordance with
the suggestion of Ewing et al. (1995). Such an investigation, therefore, seems to be a
necessary first step for measuring vorticity using a four-hot-wire probe.

Antonia et al. (1996b) extended the correction procedure for u1,2 to the measurement
of the lateral components of ωi. The method takes into account all the geometrical
parameters of the probe, including the effects of ∆x∗2, ∆x∗3 and `∗. The attenuation of
the measured vorticity spectrum increases as the wavenumber increases but does not
vanish when the wavenumber is zero. The correction procedure has been successfully
tested using the measurement of ωi (i = 2 and 3) near the end of the intermediate
region of a wake. Although the correction invokes local isotropy, the major contributor
to the high-wavenumber part of the ωi (i = 2 and 3) spectrum is the streamwise
derivative of the lateral velocity fluctuation. Since the correction of φu2,2

or φu3,1
does

not involve the assumption of local isotropy, the correction of the ωi spectrum should
be unaffected by this assumption. The details of the correction procedure are outlined
in Antonia et al. (1996b).

4. Accuracy checks
A number of checks were carried out in order to ascertain the reliability of the

present data. The distributions of u+
1

2
1/2

obtained from the X-wires and the two
parallel wires were in good agreement with those obtained with a single wire. The
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measured distributions of u+
2

2
1/2

and u+
3

2
1/2

were within 15% and 10% respectively of
those reported in Krogstad et al. (1992). The experimental uncertainties in estimates

of u+
1

2
1/2

, u+
2

2
1/2

and u+
3

2
1/2

are 7%, 16% and 12% respectively. These estimates were
obtained from the scatter in 15 data sets obtained in different runs with different
single hot wires, X-wires and V-probes. For high wavenumbers, the u2 and u3 spectra
showed good agreement with the DNS channel flow data (Kim & Antonia 1993). In
addition, the measured φ∗u1,2

obtained from the two wires of the vorticity probe were in
good agreement with those calculated from the separate two-parallel-wire experiment
(§3).

Digital records of ω2 and ω3 were obtained from the measurements of ui using the
approximations

ω2 ≡ u1,3 − u3,1 '
∆u1

∆x3

+
1

U1

∆u3

∆t
(4.1)

and

ω3 ≡ u2,1 − u1,2 ' −
1

U1

∆u2

∆t
− ∆u1

∆x2

. (4.2)

Here, ∆t (≡ f−1
s ) is the sampling time interval. Forward difference temporal differen-

tiation was used with the magnitude of U1∆t roughly half that of ∆x2 (or ∆x3); at
x2/δ = 0.22, U1∆t = 0.41 mm whereas ∆x2 = 0.9 mm. Central difference differentia-
tion with U1∆t ' ∆x2 (or ∆x3) would have advantages in terms of minimizing phase
distortions (e.g. Wallace & Foss 1995); this could be important when calculating
velocity–vorticity correlations for example. We checked however that the statistics of
ω2 (and ω3) were the same with both types of differentiation. Taylor’s hypothesis

ui,1 ≡ −
1

U1

ui,t (4.3)

was used to convert time derivatives into x1-derivatives. Piomelli, Balint & Wallace
(1989) have investigated the validity of this hypothesis using the databases generated
by DNS and large-eddy simulations (LES) of turbulent channel flow as well as
measurements in a boundary layer. They concluded that the hypothesis is valid for
x+

2 > 15 (+ denotes normalization by Uτ and ν). Kim & Hussain’s (1992) results are
also consistent with this conclusion. Recently, additional support for the applicability
of the hypothesis in the region x+

2 > 15 was provided by two-point LDA velocity
correlations (Elavarasan, Djenidi & Antonia 1996). Although a direct check of Taylor’s
hypothesis was not made in the present experiments, the previous results suggest that
the hypothesis should be a good approximation, at least in the outer region.

No correction was applied to the X-wire data for the possible effect of U1,2. The

magnitude of the ratio between the maximum value of |u1,2| and U1,2 at x2/δ '
0.03, the location closest to the wall for the present measurements, is about 20.
Consequently, the two parallel wires should adequately resolve the fluctuating velocity
gradient though not the mean velocity gradient (Antonia, Browne & Shah 1988). The
effect of the cross-stream velocity on the X-wire was also neglected. Vukoslavcevic &
Wallace (1981) have indicated that for x+

2 6 50, the influence of the instantaneous
velocity gradients and cross-stream velocity may cause large errors in the streamwise
vorticity component measured with a modified Kovasznay-type probe. Moin & Spalart
(1987) used a numerical database to study the response of an X-probe in a boundary
layer and found that errors caused by neglecting u3 were important. On the other
hand, Suzuki & Kasagi (1990), using their DNS database for a channel flow (h+ = 150,
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h is the channel half-width), concluded that the effect of u3 was minimal. Foss, Ali &
Haw (1987) have studied the effect of the transverse velocity component (U3) on the
measurement of ω3 using a four-hot-wire probe. They concluded that this effect does
not adversely affect the measurement of ω3.

An estimate of the residual vorticity measured by the present probe can be inferred

from the value of ω2
2

1/2
(or ω2

3

1/2
) in the free stream (e.g. Haw et al. 1989; Klewicki

et al. 1992). Since the present measurements were made only up to x2/δ ' 1.0, only
rough (and conservative) estimates of the residual vorticity could be inferred. The
ratios between the r.m.s. vorticity values at x2/δ ' 1.0 and those at x2/δ ' 0.44 were
about 20 (for ω3) and 17 (for ω2) respectively. Klewicki et al. (1992) reported that the

extrapolated value of ω2
3

1/2
at x2/δ ' 1.4 was 9.7% of that measured at x2/δ ' 0.58.

They pointed out that this estimate includes both the effects of the least-significant-bit
(LSB), associated with the A/D converter, and the background noise.

Klewicki & Falco (1990) suggested that tsU1/δ should be about 3500 in order to
estimate the skewness and flatness factors of velocity derivatives and vorticity with
an accuracy of ±5%. The present value of tsU1/δ is about 6600. Since tsU1/δ is
an integral time scale representative of large-scale motions, its use as a convergence
criterion for small-scale statistics may not be entirely appropriate. Following Antonia,
Satyaprakash & Hussain’s (1982) recommendation, the time required for each moment
to converge to within 5% of its final value was estimated. At x2/δ ' 0.2, about 30%
of the total record duration was sufficient for convergence to within 5% of the final
values of Sα and Fα (α = u1,1, u1,2, u2,1 and ω3).

5. Checks of local isotropy

Antonia, Anselmet & Chambers (1986) pointed out that different tests may have
different levels of sensitivity and therefore provide different indicators of the deviation
from local isotropy. For example, second-order derivatives should provide a more
stringent test than first-order derivatives since the former give more weighting to the
high-wavenumber end of the spectrum.

Both the velocity and vorticity are solenoidal quantities (Batchelor 1953; Monin &
Yaglom 1975; Antonia & Kim 1994) and consequently the corresponding isotropic
relations have similar forms, namely

φu2
(k1) = φu3

(k1) =
1

2

(
φu1
− k1

∂φu1

∂k1

)
, (5.1)

φω2
(k1) = φω3

(k1) =
1

2

(
φω1
− k1

∂φω1

∂k1

)
. (5.2)

φω1
(k1) can be expressed in terms of φu1

or φu1,1
(e.g. Van Atta 1991; Kim &

Antonia 1993):

φω1
(k1) = φu1,1

(k1) + 4

∫ ∞
k1

φu1,1
(k)

k
dk, (5.3)

φω2
(k1) = φω3

(k1) = 5
2
φu1,1

(k1)−
k1

2

∂φu1,1
(k1)

∂k1

+ 2

∫ ∞
k1

φu1,1
(k)

k
dk . (5.4)
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Figure 4. Comparison between measured u2 and u3 spectra and isotropic calculation at
x2/δ ' 0.44. The spectra of u1 are also shown.

The components of φω2
(k1) and φω3

(k1) may be written as follows:

φu1,2
(k1) = φu1,3

(k1) = 2

∫ ∞
k1

1

k
φu1,1

(k)dk, (5.5)

φu2,1
(k1) = φu3,1

(k1) = 3
2
φu1,1

(k1)− 1
2
k1

∂φu1,1

∂k1

, (5.6)

Cou1,2u2,1
(k1) = Cou1,3u3,1

(k1) = − 1
2
φu1,1

(k1) . (5.7)

The measured spectra of u2 and u3, normalized such that
∫
φ∗αdk

∗
1 = α∗2 (α ≡ u1,

u2 or u3), are plotted in figure 4 for x2/δ ' 0.44. For k∗1 > 0.05, φ∗u2
and φ∗u3

follow
each other closely, in accord with isotropy (and with the less stringent condition
of axisymmetry, as noted in Antonia et al. 1996b). In the same wavenumber range,
there is reasonable agreement between the measured φ∗u2

(or φ∗u3
) and the isotropic

calculation using the measured φ∗u1
(equation (5.1)). Least-square polynomial fits of

φ∗u1
of the form

lnφ∗u1
= a0 + a1(ln k

∗
1) + · · · an(ln k∗1)n (5.8)

were used for the calculations in (5.1). The maximum deviation between the measured
and calculated φ∗u2

is about 15%. The upturning of φ∗u2
and φ∗u3

for k∗1 > 0.7 is due to
electronic noise. The discrepancy between φ∗u2

and φ∗u3
(as well as with the calculation)

at low wavenumbers is expected since it reflects the influence of large-scale motions.
For isotropy, Co∗u1u2

, the normalized u1u2 cospectrum should be zero, although the
stringency of this test may be questionable (e.g. Mestayer 1982). At x2/δ ' 0.44,
the magnitude of Co∗u1u2

(figure 5) is nearly zero at k∗1 ' 0.1 although small negative
values occur in the range 0.1 6 k∗1 6 0.4. This behaviour has also been observed in
the Cou1u2

data obtained in a low-Reynolds-number duct flow (Antonia et al. 1992)
and a high-Reynolds-number rough-wall boundary layer (Antonia & Raupach 1993).
Antonia et al. (1992) speculated that this behaviour probably reflects the presence
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of small-scale eddies which carry a small shear stress of opposite sign to that of the
mean shear.

By comparison to the velocity spectra, velocity derivative and vorticity spectra,
which receive larger contributions from the small-scale motions, should provide
a more sensitive isotropy test (Antonia & Kim 1994). Figures 6 and 7 compare
the corrected spectra of ωi and their components with the corresponding isotropic
calculations ((5.4)–(5.7)). The present corrected φ∗u1,1

data were used for the calculation.

The distributions of φ∗u2,1
and φ∗u3,1

(figure 6) are identical for k∗1 > 0.1. There is also
good agreement between the present data and the isotropic calculation (5.6) in the
high-wavenumber range. The corrections to the spectra of ui,1 do not involve the
assumption of local isotropy (Antonia et al. 1996b). The present results, therefore,
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provide important support for local isotropy at sufficiently large k∗1. For the present
Co∗u1,2u2,1

and Co∗u1,3u3,1
, the agreement between corrected distributions and calculation

(5.7) begins at k∗1 ' 0.05. Since local isotropy is satisfied by the u2,1 and u3,1 spectra,
one would expect that it should also hold for other velocity derivative spectra. Figure
7 shows that the corrected spectra of u1,2 and u1,3 follow each other quite closely for
large wavenumbers; the agreement between the data and the calculation (5.5) applies
for k∗1 > 0.03. The corrected distributions of φω2

and φω3
(figure 7) are almost identical,

satisfying the isotropic condition φω2
(k1) = φω3

(k1). This near equality between φω2

and φω3
also satisfies the less stringent requirement of axisymmetry. The isotropic

calculation (5.4) is in good agreement with the data. The level of agreement with
isotropy indicated in figures 6 and 7 has also been found at smaller x2/δ (0.11, 0.22
and 0.33).

Antonia et al. (1996b) pointed out that the correction to the spectra of ω3 (or
ω2) does not depend on the assumption of isotropy since the correction to φu2,1

, the
largest contributor to φω3

at large k∗1, does not involve the assumption of isotropy.
Figure 8 shows the corrected spectra of ω3 and its three components at x2/δ ' 0.44.
The present distributions indeed confirm that φ∗u2,1

is the major high-wavenumber

contributor to φ∗ω3
while φ∗u1,2

provides the major contributions at lower wavenumbers.

This behaviour is also true for the uncorrected data. At k∗1 ' 0.6, φ∗u2,1
represents

56% of φ∗ω3
; φ∗u1,2

and −2Co∗u1,2u2,1
represent 26% and 18% of φ∗ω3

respectively. The
conclusion of Antonia et al. (1996b), that the correction to φω3

(or φω2
) does not

depend on local isotropy, should, therefore, apply to the present data.
Previous studies (e.g. Corrsin 1958; Antonia & Kim 1994) have suggested that

the departure from isotropy may depend on the value of the suitably normalized
mean shear S (≡ U1,2). There are several possibilities for non-dimensionalizing S .

For example, it is common to use the parameter Sq2/ε (where q2 = u2
1 + u2

2 + u2
3)

which represents the ratio between the time scale of the large-scale motion and that
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of mean deformation (e.g. Moin 1990; Lee, Kim & Moin 1990). Durbin & Speziale
(1991) have argued that the dissipation rate tensor cannot be isotropic if Sq2/ε 6= 0.
Kim & Antonia (1993) found that local isotropy was reasonably satisfied for velocity
and pressure spectra at high wavenumbers with a value of Sq2/ε of about 6 (at
x2/h ' 0.4, where h is the channel half-width). For the spectral data presented in
figures 4–7, whose behaviour in the high-wavenumber ends is consistent with local
isotropy, the value of Sq2/ε (' 11.3) is not negligible. One disadvantage of using

Sq2/ε, as pointed out by Antonia & Kim (1994), is that its value is zero at the wall,
where S is maximum.

Uberoi (1957) suggested the use of S/u2
1,2

1/2
, where u2

1,2

1/2
would reflect the

anisotropy of the fluctuating velocity gradient. Corrsin (1958) non-dimensionalized
S using the Kolmogorov time scale (ε/ν)−1/2. He argued that for local isotropy to
be a good approximation, it is necessary that S(ν/ε)1/2 � 1. Using the DNS data,
Antonia & Kim (1994) showed that in the near-wall region of a turbulent channel
flow, S(ν/ε)1/2 is better behaved than Sq2/ε. Their results indicated that for vorticity
to satisfy local isotropy, Corrsin’s (1958) criterion can be relaxed to S(ν/ε)1/2 6 0.2. At
x2/δ ' 0.44, S(ν/ε)1/2 is about 0.1. This is consistent with the expectation that local
isotropy is a good approximation for dissipative wavenumbers (k∗1 & 0.1), provided
S(ν/ε)1/2 is small (Sreenivasan & Antonia 1997).

Saddoughi & Veeravalli (1994) reported that the wavenumber at which Cou1u2
first

satisfies local isotropy is k1(ε/S
3)1/2 ' 10; this limit can be relaxed to k1(ε/S

3)1/2 ' 3
for velocity spectra. Their measurements were taken in a high-Reynolds-number
(Rλ ' 1450) rough-wall boundary layer at x2/δ ' 0.4. For the present data, the
corresponding limit is about 15 for Cou1u2

. This larger value, compared with that of
Saddoughi & Veeravalli, reflects the smaller value of Rλ (' 250) in our flow. As Rλ
increases, the extent of the inertial range increases and isotropy should be satisfied
at smaller wavenumbers. For the present φωi (i = 2, 3) data, the lower limit for
k1(ε/S

3)1/2 can be relaxed to 1.
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Figure 9. Comparison between normalized distributions of u2
i,j over the smooth and rough walls.

Rough wall, uncorrected data : �, ◦; corrected data : �, 4. Smooth wall, only uncorrected data
are shown. (a) Rough wall : α = u1,1; δ+ = 3552. Smooth wall : —, α = u1,1, δ+ = 555. (b) Rough
wall : �, �, α = u2,1; ◦, 4, u3,1. Smooth wall : —, α = u2,1.

6. Results for ω2
i and u2

i,j

In the outer region of a self-preserving layer, δ and Uτ are the appropriate normal-
izing length and velocity scales. Antonia, Rajagopalan & Zhu (1996a) pointed out
that, since ε scales on δ and Uτ, the mean-square vorticity will depend not only on δ
and Uτ, but also on the Reynolds number. Specifically, they argued that, in the outer
region of a self-preserving layer,

ω2 = δ+U
2
τ

δ2
f
(x2

δ

)
. (6.1)

They provided good support for this scaling, at least for ω2
3 , using data obtained from

DNS of a turbulent boundary layer (Spalart 1988) and channel flow (Kim, Moin &
Moser 1987; Antonia, Kim & Browne 1991) and measurements in a turbulent bound-
ary layer (Rajagopalan & Antonia 1993). They also suggested that the components

of ω2
3 , i.e. u2

1,2 and u2
2,1, should scale in a manner similar to (6.1).

Normalized distributions of u2
i,j and ω2

i are plotted in figures 9 and 10. Both
uncorrected and corrected data are shown. For comparison, the smooth wall data
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Figure 10. Comparison between normalized distributions of u2
i,j and ω2

i over smooth and rough
walls. Rough wall, uncorrected data : �, ◦; corrected data : �, 4. Smooth wall, all are uncorrected
data. (a) Rough wall : �, �, α = u1,2; ◦, 4, u1,3. Smooth wall : —, α = u1,2. (b) Rough wall : �,
�, α = ω3; ◦, 4, ω2. Smooth wall : —, α = ω3 (Rajagopalan & Antonia 1993); O, ω3, δ+ = 966
(Klewicki & Falco 1990); — - —, α = ω3, δ+ = 651 (Spalart 1988); - - -, ω2 (Spalart 1988).

of Rajagopalan & Antonia (1993) for Reθ = 1450 (only ω2
3 , u2

1,1, u
2
2,1 and u2

1,2 are

available) and of Klewicki & Falco (1990) for Reθ = 2870 (ω2
3 only) are included in

the figures. These latter data are not corrected for spatial resolution.

The results indicate that the roughness affects u2
i,j and ω2

i differently. The normalized

magnitudes of u2
1,1 are reduced over the major part of the layer. Compared to the

smooth wall data, there is a significant increase in the normalized values of u2
2,1 and

u2
3,1 over the rough wall (figure 9b). This increase may reflect the enhancement of
u2 (and possibly u3) activity over the rough wall. Indeed, the flow visualizations of
Grass (1971) showed that violent ‘ejections’ and ‘sweeps’ occurred in a boundary layer
over a gravel surface. Krogstad et al. (1992) found that not only are ejections (Q2
events) and sweeps (Q4 events) more intense – after normalization by U2

τ – in the
rough wall layer but their frequency of occurrence is nearly twice as large as in a

smooth wall layer. In this context, the present large values of δ+−1
u2

2,1(δ/Uτ)
2 seem

consistent with the documented characteristics of the Q2 and Q4 events in the layer.
The present results also seem to suggest a direct link between strong and frequent Q2
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and Q4 events and higher magnitudes of δ+−1
u2

3,1(δ/Uτ)
2. This seems consistent with

an approach towards isotropy, since u2,1 and u3,1 would then be perfectly correlated.
Physically, it also reflects the three-dimensional nature of the surface and hence the
three-dimensionality of ejections and sweeps. Note that the increase in the strength
of Q2 and Q4 events is offset by an increase in the magnitude of Q1 and Q3 events
since the Reynolds shear stress is constant and approximately equal to U2

τ in the
inner layer.

The values of δ+−1/2
u2

1,2

1/2
δ/Uτ are significantly smaller over the rough wall than

over the smooth wall (figure 10a). This should be a direct consequence of the changes
in major u1,2-producing motions over the former wall. Experimental (e.g. Johansson
& Alfredsson 1982) and numerical (Robinson 1991b; Johansson, Alfredsson & Kim
1987) studies have confirmed the existence of ‘near-wall shear layers’ over a smooth
wall (x+

2 6 100). These layers originate as a result of the no-slip condition at the

surface and give rise to high instantaneous values of U1,2. The magnitude of u2
1,2

in the wall region is, in a sense, a measure of the strength of these shear layers.
It is conceivable that by relaxing the no-slip condition at the wall, due to surface
roughness, both the rate of generation and strength of the shear layers may be

reduced. Dubief, Djenidi & Antonia (1997) reported measurements of u+
1,2

2
in the wall

regions of turbulent boundary layers over a smooth wall and a riblet surface. Their

results indicated that, relative to the smooth wall, the values of u+
1,2

2
1/2

at x+
2 = 10

are decreased by 15% for the drag-reducing case (Reθ = 540, s+ = h+ = 17.3;
s and h are the spacing and height of the riblets respectively) and 40% for the
drag-augmenting case (Reθ = 940, s+ = h+ = 29.2). The ‘near-wall shear layers’ are
apparently weakened by the grooves; their strength may be further weakened as the
roughness increases. The interaction between the inner and outer region of a rough
wall layer is expected to be more intense than over a smooth wall (e.g. Krogstad et
al. 1992; Shafi & Antonia 1995). The absence of strong shear layers near the rough

wall may lead to a reduction of u2
1,2 in the outer region.

The influence of roughness is less marked on ω2
i than on u2

i,j . While there are

differences between smooth and rough wall values of δ+−1
u2
i,j(δ/Uτ)

2, the distributions

of δ+−1
ω2

3(δ/Uτ)
2 in the two layers, shown in figure 10(b), appear to be similar for

a major portion of the outer layer (0.1 6 x2/δ 6 0.5). Note that for Rajagopalan
& Antonia’s (1993) measurements, ∆x∗2 varies from 2.7 to 1.9 in the range 0.09 6
x2/δ 6 0.5. In view of the smaller values of ∆x∗2 used by these authors, it is possible

that their ω2
3 data may have already been overestimated. Surprisingly, there is good

agreement between the ω2
3 data of Klewicki & Falco (1990) and those of Rajagopalan

& Antonia (1993), despite the fact that the spatial resolutions of the probes used in the
two investigations were different. For Klewicki & Falco’s (1990) data, the minimum
and maximum values of ∆x∗2 were respectively 0.9 and 3.4. It seems likely that the

‘correct’ smooth wall distribution of δ+−1
ω2

3(δ/Uτ)
2 would lie somewhere below both

smooth wall data sets. Support for this expectation is provided by the δ+−1
ω2
i (δ/Uτ)

2

data of Spalart (1988) for Reθ = 1410. The normalized outer-layer values of ω2
2 and

ω2
3 are relatively larger over the rough wall.

Several conceptual models have been proposed for the coherent structures observed
in a smooth-wall turbulent boundary layer (e.g. Cantwell 1981; Robinson 1991a). In
Falco’s (1991) proposal, the outer region comprises large-scale motions and typical
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eddies. The characteristics of the large-scale organized motions in smooth wall layers
have been investigated extensively (e.g. Kovasznay, Kibens & Blackwelder 1970;
Brown & Thomas 1977; Chen & Blackwelder 1978; Antonia, Bisset & Browne 1990).
Typical eddies are described as local, compact regions of vorticity concentration with

a distorted vortex-ring-like shape and behaviour. Falco argued that ω2
3

1/2
should

provide a reliable measure of the strength of these eddies in the outer layer. The
present results would then suggest that the strength of these eddies is increased by
the roughness.

Falco (1991) proposed that the characteristic velocity of the typical eddies UTE can

be expressed as UTE = C1ω
2
3

1/2
Cx2

, where C1 is a constant (= 0.104) and Cx2
is the

average length scale of the typical eddies. He suggested that the dependence of Cx2

on Reθ can be described as Cx2
/δ = C2Re

−0.758
θ , where C2 (= 30.5) is a constant. On

the basis of Klewicki & Falco’s (1990) ω3 measurements, he argued that in the region

5 6 x+
2 6 δ

+, ω2
3

1/2
= F(x+

2 )U2
τ /ν; here F is a universal function. Using these results,

he showed that UTE/Uτ = 1.64(x+
2 )−0.5Re0.159

θ . According to Antonia et al. (1996a),

δ+−1/2
ω2

3

1/2
δ/Uτ = f3(x2/δ), where f3 is a universal function, which depends on the

flow. It follows that

UTE/Uτ = C1δ
+1/2

f3(x2/δ)Cx2
/δ . (6.2)

Although the exact dependence of Cx2
/δ on Reθ may not be known for the rough

wall layer, the difference between the present distribution of f3(x2/δ) and that over a
smooth wall suggests that the distributions of UTE/Uτ would also differ in the two
layers. Falco’s model assumes that typical eddies are convected towards the wall by
the higher-speed outer-layer fluid. This mechanism may contribute to the interaction
between outer and inner regions; this interaction should be stronger over the rough
wall arising from the increased strength of the typical eddies.

The present normalized distributions of both uncorrected and corrected data for ω2
2 ,

u2
1,3 and u2

3,1 are almost identical to those of ω2
3 , u2

1,2 and u2
2,1 respectively. This equality

is not observed in the uncorrected smooth wall data (not shown) of Balint, Wallace &

Vukoslavcevic (1991). Spalart’s data (not shown) indicate that ω2
2

1/2
' ω2

3

1/2
is satisfied

for x2/δ > 0.1; ω2
1

1/2
, ω2

2

1/2
and ω2

3

1/2
are approximately equal only for x2/δ > 0.6.

The DNS data for a low-Reynolds-number turbulent channel flow (Antonia et al.

1991) indicate that the ratio u2
1,2/u

2
1,3 approaches the value of 1 for x+

2 > 40. For

u2
2,1/u

2
3,1, the rate of convergence towards 1 is slower than for u2

1,2/u
2
1,3; ω

+
2

2 ' ω+
3

2
for

x+
2 > 40. Away from the wall, Choi, Moin & Kim’s (1993) DNS data for a turbulent

channel flow over riblets indicate that, in a drag-augmenting mode (s+ = 40, h+ = 20;

s and h are the width and height of the riblet elements), ω2
2 ' ω2

3 . Since the equalities

u2
1,2 = u2

1,3, u
2
2,1 = u2

3,1 and ω2
2 = ω2

3 are consistent with local axisymmetry (George &
Hussein 1991), the turbulence structure in the present rough wall layer closely satisfies
local axisymmetry.

Ratios of different velocity derivative and vorticity variances have been compared
in the literature with isotropy. For example, the the ratios

K1 ≡ 2u2
1,1/u

2
2,1, (6.3)

K2 ≡ 2u2
1,1/u

2
3,1, (6.4)
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K3 ≡ 2u2
1,1/u

2
1,2, (6.5)

K4 ≡ 2u2
1,1/u

2
1,3, (6.6)

Kω2
≡ 5u2

1,1/ω
2
2 , (6.7)

Kω3
≡ 5u2

1,1/ω
2
3 , (6.8)

should be equal to 1 in isotropic turbulence.
Browne, Antonia & Shah (1987) reviewed data for K1, K2, K3 and K4 obtained

in various flows. Noting that there were fewer published results for K3 and K4 than
for K1 and K2, they found that K1 ' K2 > 1 and K3 ' K4 < 1. Verollet (1972)
reported that K1 = 1.72 and K2 = 1.59 at x2/δ ' 0.32 in a smooth wall boundary
layer. For a turbulent channel flow, Antonia et al. (1991) found that the magnitudes
of K1 (' 4 at x+

2 = 30), K2 (' 2), K3 (0.22) and K4 (0.22) slowly approach 1 at the
centreline. The present distributions of the ratio Kα are plotted in figure 11. Both
corrected and uncorrected data are shown in the figure. All the uncorrected ratios
deviate significantly from the isotropic value. After correction, the distributions of the
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ratios are approximately equal to 1 over a significant portion of the layer. Recalling

that the corrections to spectra of ui,1 (whose integrals with respect to k1 yield u2
i,1) do

not involve the assumption of isotropy, greater weighting should be given to K1 and
K2 than to K3 and K4; the corrected distributions of Kω2

and Kω3
should also be

reliable. Uncorrected values of K1, K3 and Kω3
, inferred from smooth-wall boundary

layer data (obtained from the experiment of Rajagopalan & Antonia 1993), are also
included in figure 11. The magnitude of K1 is significantly larger than 1. By contrast,
K3 is smaller than 1 everywhere in the layer, consistent with the conclusion of Browne
et al. (1987). Interestingly, the distribution of Kω3

is close to 1, possibly reflecting the
compensation arising from the opposite trends of K1 and K3.

7. PDFs and higher-order moments

The one-point probability density functions (p.d.f.) of turbulence quantities (or pα
in short) are expected to depend on the boundary conditions or the type of flow.
It is in this context that we examine the effect of roughness on pα with α = ui,j or
ωi. The distributions of pα (α = u2,1, u1,2 and ω3) at x2/δ ' 0.44, smoothed using a
window of five data points, are plotted in figure 12. The present data are compared
with the smooth wall data (obtained from the experiment of Rajagopalan & Antonia
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1993) at x2/δ ' 0.5. All distributions of pα are normalized such that
∫
α2

1/2
pαdα = 1.

A semilogarithmic presentation is used to emphasize the tails of pα. For α = u2,1, no
marked effect of roughness on pu2,1

can be discerned. Both distributions are distinctly
non-Gaussian with long, approximately exponential, tails; for sufficiently large |α|, pα
assumes the form pα ∼ exp(−β|α|), where β is a constant. In this respect, the shape of
pu2,1

is similar to that previously reported for pu1,1
(e.g. Wyngaard & Tennekes 1970;

Kuo & Corrsin 1974; Frenkiel & Klebanoff 1975; Frenkiel, Klebanoff & Huang 1979).
While rough and smooth wall distributions for α = u1,2 are similar in shape, there are
significant differences in the negative tails (figure 12a). In particular, compared to the
smooth wall, there is a higher probability of finding large negative u1,2 fluctuations
over the rough wall. The shape of the present pu1,2

is similar to that reported for
DNS data of isotropic turbulence (She, Jackson & Orszag 1988; Kida & Murakami
1989; Vincent & Meneguzzi 1991; Jimenez et al. 1993) and turbulent channel flow
data (Dinavahi, Breuer & Sirovich 1995) as well as experimental wake data (Shafi,
Zhu & Antonia 1997). The present distribution of pu1,2

is positively skewed. It is
important to point out that we are unable to correct pα for the effect of spatial
resolution. At x2/δ ' 0.44, the present value of ∆x∗2 is 6.2. For the smooth wall data,
∆x∗2 ' 1.9 at x2/δ ' 0.5. Previous investigations (Jimenez 1994; Shafi et al. 1997)
have indicated that the tails of the p.d.f. of u1,2 are affected due to the finite value
of ∆x∗2; the probability of finding large |u1,2| fluctuations decreases as ∆x∗2 increases.
Accordingly, the tails of the p.d.f.s of u1,2 in figure 12(a) may have slightly different
levels of attenuation. In addition, it has been observed that the tails of the p.d.f. of
u1,2 evolve as Rλ increases (Jimenez et al. 1993; Shafi et al. 1997). At x2/δ ' 0.44,
Rλ = 230; for the smooth wall Rλ ' 70 (x2/δ ' 0.5). In view of the different effects
of ∆x∗2 and Rλ on the p.d.f. of u1,2, it seems reasonable to suggest that the differences
in the negative tails of the p.d.f.s should reflect differences in the turbulence structure
between the two layers. The relative contribution of the positive tail, compared to that

of the negative tail, to u2
1,2 is higher for the smooth wall layer. The surface roughness

appears to reduce the difference between the contributions to u2
1,2 from positive and

negative u1,2 fluctuations. This seems consistent with an approach towards isotropy of
the small-scale structure in the rough wall layer. For ω3 < 0, the distribution of pω3

is
essentially the same for smooth and rough walls. There is however a higher probability
of finding large positive ω3 fluctuations in the rough wall layer and the asymmetry
in pω3

is consequently reduced; for isotropic turbulence, pωi is symmetric (Antonia et
al. 1996b). The behaviour of the tails of pα (α = ui,j or ωi) has been associated with
the small-scale motion (e.g. Jimenez et al. 1993). In this respect, the present results
suggest that the roughness can affect the nature of small-scale fluctuations.

Since the distributions of pα for α = u1,1, u2,1 and u1,2 all possess long exponential
tails, one may expect, albeit speculatively, that other components of ui,j would also
exhibit non-Gaussian characteristics in their p.d.f.s. Indeed, the distributions of pα for
α = u3,1, and u1,3 (figure 12b) also indicate noticeable departures from a Gaussian
distribution. Their shape is similar to that of pu1,1

in the sense that they all possess
long exponential tails. The distributions of pu2,1

and pu3,1
are nearly identical; both are

symmetric with respect to the origin. In contrast to pu1,3
, which is nearly symmetric,

there is evident asymmetry in pu1,2
. Small differences can be observed between the

distributions of pω2
and pω3

(figure 12b); unlike pω2
, which is symmetrical, pω3

is
negatively skewed. The present shapes of pωi are similar to those observed in the wake
flow (Antonia et al. 1996a). The results suggest that the p.d.f.s of other components
of ui,j , not measured here, may also exhibit an exponential-tail-like behaviour. Some
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wall : �, α = u1,2. (c) Rough wall : ◦, α = ω3; �, ω2. Smooth wall : �, α = ω3.

support for this suggestion is provided by the distribution of pω1
reported by Kida

& Murakami (1989); since this distribution is exponential, pu2,3
and pu3,2

are likely to
behave similarly.

Over a relatively large range (0.1 6 x2/δ 6 0.4), the p.d.f.s appeared to be indepen-
dent of x2/δ. This is consistent with the results of Dinavahi et al. (1995) who noted
that, away from the near-wall region, the p.d.f.s of ui,j (except for u1,2) are independent
of x+

2 .

The magnitudes of the skewness Sα (≡ α3/α2
3/2

) and flatness factors Fα (≡ α4/α2
2
)

quantify the departure of pα from a Gaussian distribution. The distributions of Sα for
α = u2,1, u3,1, u1,2, u1,3, ω3 and ω2 are plotted in figure 13. In view of the relatively
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Figure 14. Distributions of the flatness factors of ui,j and ωi. Symbols are as in figure 13.

large values of ∆x∗2 (9.9 at x2/δ ' 0.03 to 5.1 at x2/δ ' 0.66), Su1,2
is expected to be

underestimated. In particular, the true values of Su1,2
in the inner region will be higher

than the measured data. However, we are unable to correct these data for the effect
of a finite wire separation. In the range 0.05 6 x2/δ 6 0.3, the values of Su1,2

over the
rough wall are smaller than those over the smooth wall. At x2/δ ' 0.1, the difference
is as large as 60%.

With regard to the sign of Su1,2
, Tavoularis & Corrsin (1981) suggested, using a

mixing-length type model, that

sgn Su1,2
= sgn U1,2 .

They found support for this argument from their Su1,2
(' 0.62) data for a quasi-

homogeneous shear flow with a constant value of U1,2. Pumir & Shraiman’s (1995)
numerical investigation of homogeneous shear flows suggested that a positive value
of Su1,2

(0.85) reflects the effect of a uniform shear on homogeneous turbulence. A
positive value of Su1,2

was also reported by Antonia et al. (1993) for turbulent channel

flows. It appears that the influence of U1,2 on Su1,2
is as important in wall-bounded

shear flows as in homogeneous shear flows. Although the non-zero value of the
temperature derivative skewness has been attributed to the presence of coherent
ramp-like features (e.g. Antonia et al. 1986; Sreenivasan 1991), such signatures could
not be clearly distinguished in the present u1,2 signals.

Relative to the smooth wall, the magnitude of Sω3
is significantly reduced in the

region 0.1 6 x2/δ 6 0.5 over the rough wall (figure 13c). This trend is consistent
with the differences observed in the p.d.f.s of ω3 in figure 12(a). Balint et al. (1991)
attributed the negative values of Sω3

to the spanwise vortex stretching. The smaller
values of both Sω3

and Su1,2
indicate that the turbulence structure is closer to isotropy

over the rough wall. Because of symmetry in the x3 direction, Sω2
, Su1,3

and Su3,1
should

be zero. This is indeed the case for the present experiment. Also, Su2,1
is nearly zero

for x2/δ . 0.7.
The distributions of Fα appear to be relatively less affected by the change in surface

condition (figure 14). In both experiment (Shafi et al. 1996) and numerical work
(Jimenez 1994) Fu1,2

may depend on the choice of ∆x∗2. In particular, Fu1,2
may be

underestimated for large ∆x∗2. Moreover, there is a moderate dependence of Fu1,2
on
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Rλ, the magnitude of Fu1,2
increasing with Rλ. Allowing for the difference in the value

of ∆x∗2 between the two layers, it is probable that the ‘true’ value of Fu1,2
will be larger

over the rough wall. However, it would be hard to assert unambiguously that this
difference is solely due to the roughness since Rλ is also different between the two
layers. For x2/δ 6 0.05, the trend of the data suggests that the ‘true’ Fu1,2

will be
significantly higher in the rough wall layer.

8. Approximations of ε and ω2
i

Accurate estimates of the average energy dissipation rate ε (≡ νui,j + uj,i) are
important in turbulence research. Since the measurement of the twelve terms which
appear in the expression for ε is a formidable experimental task, many attempts
have been made to estimate ε approximately. The easiest and most commonly used
approximation assumes isotropy, namely

εI = 15νu2
1,1 . (8.1)

Wygnanski & Fiedler (1969) measured nine terms of ε in a self-preserving circular jet
and suggested a ‘semi-isotropic’ expression for ε,

εSI ' ν
[
u2

1,1

(
1 + 4/K1

)
+ u2

1,2(4 +K1)
]

(8.2)

where K1 is defined in (6.3). When K1 assumes the isotropic value of 1, (8.2) reduces
to (8.1). Browne et al. (1987) measured nine terms of ε in the self-preserving region of
a cylinder wake. They suggested a reasonable approximation to ε, assuming isotropy,
is

ε ' 3ν[u2
1,1 + u2

1,2 + u2
1,3] . (8.3)

Using DNS data for a turbulent channel flow, Antonia et al. (1991) suggested an
empirical formula for estimating ε, i.e.

ε ' ν[2u2
1,2 + 11u2

1,1] . (8.4)

There are other approximations to ε which are based on the assumption of axisym-
metry (e.g. George & Hussein 1991; Antonia et al. 1991). Since these approximations

require estimates of quantities (e.g. u2
3,2, u

2
2,3, u

2
2,2) that are relatively difficult to measure,

they will not be considered here. Expressions (8.2)–(8.4) are particularly attractive
from an experimental viewpoint. If these approximations provide reasonable estimates
of ε, the use of only two parallel wires would then be sufficient for the purpose of

measuring ε in shear flows. Klebanoff (1955) measured u2
1,1, u

2
2,1, u

2
3,1, u

2
1,2 and u2

1,3 in
a smooth-wall boundary layer. Assuming isotropy for the rest of the terms in ε, he
estimated ε using the relation

ε ' ν
[
u2

1,1 + u2
2,1 + u2

3,1 + 5
2
(u2

1,2 + u2
1,3)
]
. (8.5)

Another possibility is to approximate ε by (e.g. Hinze 1975)

ε ' ν[7u2
1,1 + u2

2,1 + u2
3,1 + u2

1,2 + u2
1,3] . (8.6)

The universal equilibrium hypothesis of Kolmogorov (1941) suggests that, in the
inertial subrange, φu1

has the form

φu1
(k1) = C1ε

2/3k
−5/3
1 . (8.7)
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Bradshaw (1969) showed that reasonable estimates of ε can be inferred from (8.7).
He suggested that C1 ' 0.55 in the outer region and C1 ' 0.51 in the inner region of
wall shear flows.

Independent estimates of ε can also be obtained from the behaviour of the velocity
structure functions [∆u1(r)]n ≡ [u1(x+ r)− u1(x)]n for n = 2 and 3 in the inertial
range. Kolmogorov (1941) proposed that in the inertial range

[∆u1(r)]2 = C2ε
2/3r2/3 . (8.8)

A value of 2 for C2 appears to be reasonably supported experimentally (e.g. Yaglom
1981). The behaviour of the third-order velocity structure function is given by (e.g.
Monin & Yaglom 1975)

[∆u1(r)]3 = −C3εr (8.9)

where C3 has a theoretical value of 4/5.
Distributions of ε δ/U3

τ estimated using (8.1)–(8.6) are shown in figure 15. Corrected

data for u2
1,1, u

2
2,1, u

2
3,1, u

2
1,2 and u2

1,3 are used. A value of 1 is used for K1 in (8.2). There
is good agreement between different approximations of ε for a significant portion of
the layer. This is consistent with the distributions of Kα (figure 11). For x2/δ < 0.1,
there are discrepancies between different estimates of ε. This is particularly evident
at x2/δ ' 0.03 where the assumption of isotropy is untenable. Overall, for the region
away from the wall, the present results provide encouraging support for εI as a
reasonable approximation to ε in the present flow.

Values of ε inferred from (8.7), (8.8) and (8.9) at x2/δ ' 0.11, 0.22 and 0.44 are also
shown in figure 15. For the present φ∗u1

(k∗1) data, there exists an approximate –5/3
inertial range in the region 0.02 6 k∗1 6 0.08. The magnitude of C1 estimated from the

plateau in k∗1
5/3φ∗u(k

∗
1) is 0.67. This value is significantly larger than the atmospheric

surface layer value of 0.5 reported by Kaimal et al. (1972) and that suggested by
Sreenivasan (1996). However, it is within the range of values of C1 reviewed by
Yaglom (1981). At x2/δ ' 0.44, the value of ε δ/U3

τ inferred from (8.7) is 26% larger
than that obtained from the isotropic estimates. The magnitude of ε δ/U3

τ obtained
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Figure 16. Comparison between different approximations to ω2
i . >, i = 3, corrected data; O,

α = 1.4, equation (8.10); �, 2; +, 3. < , i = 2, corrected data; 4, α = 1.4, equation (8.11); �, 2; ◦, 3.

from (8.8) with C2 = 2 is also larger. Better agreement is observed between the values
of ε δ/U3

τ calculated using (8.9) and those inferred from the isotropic approximations.

Rajagopalan & Antonia (1993) approximated ω2
3 by the expression

ω2
3 ' u2

1,2 + αu2
1,1 . (8.10)

They found that α = 1.4 provided good agreement between the approximation and

their measurements of ω2
3 in the outer region. They suggested that the value of α may

depend on the Reynolds number and the type of flow. Using DNS data of a fully
developed turbulent channel flow, Antonia et al. (1991) found that α = 2 provided
satisfactory results at two Reynolds numbers (h+ = 180 and 395; h is the channel

half-width). This value of α also provided good approximations to ω2
2 using a relation

similar to (8.10), namely

ω2
2 ' u2

1,3 + αu2
1,1 . (8.11)

If local isotropy is satisfied, the value of α in (8.10) and (8.11) should be 3.

Figure 16 contains distributions of the approximated ω2
3 (equation (8.10)) and ω2

2

(equation (8.11)) using corrected data for u2
1,1, u

2
1,2 and u2

1,3. Three different values of

α (= 1.4, 2 and 3) are considered. Also plotted are corrected data for ω2
3 and ω2

2 . For

α = 1.4 and 2, both (8.10) and (8.11) underestimate the values of ω2
i . Good agreement

is obtained between the corrected data and the approximations when α = 3 in the
region x2/δ > 0.05. The results suggest that isotropy-based approximations should

provide accurate estimates of ω2
i for a substantial portion of the present rough wall

layer. It therefore seems reasonable to expect that other velocity derivatives – not
measured in the present experiment – should also satisfy isotropy. Consequently,

one should be able to estimate ω2
1 and ω2 with reasonable accuracy. The inferred

distribution of δ+−1
ω2(δ/Uτ)

2 for the present flow is shown in figure 17. Here ω2 is

approximated using ω2 ' ω2
3 + 2ω2

2; note that the approximation ω2 ' 3ω2
2 ' 3ω2

3

would have yielded identical results. The smooth wall data of Spalart (1988) are
also shown in the figure. Spalart’s data suggest that, in the smooth wall outer layer,
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δ+−1
ω2(δ/Uτ)

2 is smaller than in the rough wall layer. The present distribution of

δ+−1
ω2(δ/Uτ)

2 is identical to that of ε δ/U3
τ , obtained using (8.5). This conforms with

the assumption of homogeneity, i.e. ε = νω2. Compared to the smooth wall values
of ε δ/U3

τ of Klebanoff (1955) and Spalart (1988), the present values are larger in
the outer region of the flow (figure 16), consistent with the increased production of
turbulent kinetic energy in the rough wall layer.

The increase in δ+−1
ω2(δ/Uτ)

2 and εδ/U3
τ in the rough wall is not as large as

that previously observed for most components of the Reynolds stress tensor. There
is a hint here that vorticity-producing motions may not be the only Reynolds-
stress-producing mechanism in the outer layer. For example, strong Reynolds-stress-
producing ejections (or Q2 events) originating from the wall region may extend well
into the outer layer. Stronger large-scale motions (Krogstad & Antonia 1994) would
also contribute to the Reynolds stress production. It seems appropriate to comment
briefly on the possible Reynolds-stress-producing motion in the inner region of the
rough wall layer. Quasi-streamwise vortical structures are usually assumed to be
the major structural element responsible for turbulence production in the near-wall
region of a smooth-wall boundary layer (e.g. Robinson 1991b; Bernard, Thomas &
Handler 1993). In this region, ‘low-speed streaks’ are often believed to be generated
by the passage of these structures over the smooth wall. Intuitively, one would not
expect these structures to survive over the present mesh roughness. This expectation
is supported by the reduced anisotropy of the Reynolds stresses (Shafi & Antonia
1995). An alternative mechanism, which may play an important role in the turbulence
production in the inner region, is the creation of wakes by the roughness elements.
Bandyopadhyay (1987) speculated that the quasi-cyclic nature of these wakes may
determine momentum and heat transports from the wall. A further possibility relates
to the existence of a reservoir of low-speed fluid in the interstices between roughness
elements. The ejection of this fluid away from the wall may occur violently, possibly
through the interaction with relatively intense wall-ward sweep-like motions. Such a
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scenario would be consistent with strong values of −u+
1 u

+
2 , though not necessarily

strong ω2, in the inner region.

9. Conclusions
Measurements of the spanwise and wall-normal components of vorticity (ω2 and

ω3) have been made in the fully developed turbulent boundary layer over a mesh-
screen roughness with a four-hot-wire vorticity probe. The measured spectra of ω2 and
ω3 and their constituent velocity derivatives were corrected for the spatial resolution
of the probe and compared with the relevant isotropic expressions. There is support
for isotropy at high wavenumbers, in particular, from spectra of u2,1 and u3,1. The
wavenumber at which vorticity spectra conform with local isotropy was found to be
k1(ε/S

3)1/2 ' 1, which is significantly smaller than that (' 15) for u1u2 cospectra.
Additional support for isotropy is provided by the values of the ratios K1–K4, Kω2

and Kω3
; they are all close to the isotropic value of 1.

Surface roughness appears to affect the elements of u2
i,j and ω2

i differently. In

particular, compared to the smooth wall values, the magnitudes of δ+−1
u2
i,j(δ/Uτ)

2 for
i = 2 and j = 1 are significantly increased in the rough wall layer, consistent with the
presence of stronger and more frequent ejections and sweeps. On the other hand, the

magnitude of δ+−1
u2

1,2(δ/Uτ)
2 is reduced markedly over the rough wall, apparently

reflecting the reduced strength and frequency of near-wall shear layers. Overall, the

effect of the roughness is less pronounced in ω2
i than in u2

i,j . The present data indicate

a relatively moderate increase of δ+−1
ω2
i (δ/Uτ)

2 for i = 2 and 3 in the outer layer,
suggesting the presence of somewhat stronger vortical motions in this region.

Additional differences between smooth and rough wall layers can be observed in
the p.d.f.s of u1,2 and ω3. Although the shapes of pu1,2

and pω3
are similar in both

layers, large negative fluctuations of u1,2 and large positive ω3 fluctuations are more
probable over the rough wall. Further, the asymmetries in both pu1,2

and pω3
are

reduced in the rough wall layer. Correspondingly, the magnitudes of the skewnesses
Su1,2

and Sω3
are smaller over the rough wall.

Different approximations to ε and ω2
i have been considered. The results suggest

that, outside the wall region, reasonable estimates of ε and ω2
i can be obtained by

assuming isotropy. In the outer region, the inferred values of δ+−1
ω2(δ/Uτ)

2 are
relatively larger over the rough wall than on the smooth wall, apparently implying
increased vortex stretching in the rough wall layer.

The present results indicate that the surface roughness has a marked effect on the
small-scale structure throughout the layer. Different small-scale quantities are affected
differently but the overall effect is an unquestionable tendency towards isotropy. This
feature should be useful in the context of developing k−ε and Reynolds stress models
as well as large-eddy simulations for a turbulent boundary layer over a roughness
similar to that considered here. The results also confirm that there are important
differences in turbulence structure between the present rough-wall boundary layer
and a smooth wall layer. Although the present roughness is classified as ‘k-type’, this
classification is based solely on the effect the roughness has on the logarithmic mean
velocity profile and is inappropriate for characterizing the Reynolds stresses or, more
generally, the turbulence structure; we believe there is enough evidence, including the
recent rough wall data of Westbury (1996), to support this contention. The degree of
isotropy exhibited by the present rough wall layer may not apply to boundary layers
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over other k-type rough walls. The three-dimensionality of the roughness, perhaps
quantifiable through the roughness aspect ratio considered by Bandyopadhyay &
Watson (1988), may play a major role in determining the degree of anisotropy of
both large-scale and small-scale structures in the layer. It is recommended that the
small-scale structure in boundary layers over other k-type rough walls, preferably
with significantly different roughness aspect ratios, be examined in the same detail as
in the present study.

The support of the Australian Research Council is gratefully acknowledged. The
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